Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response.
نویسندگان
چکیده
Corynebacterium glutamicum contains genes for 13 two-component signal transduction systems. In order to test for their essentiality and involvement in the adaptive response to phosphate (Pi) starvation, a set of 12 deletion mutants was constructed. One of the mutants was specifically impaired in its ability to grow under Pi limitation, and therefore the genes lacking in this strain were named phoS (encoding the sensor kinase) and phoR (encoding the response regulator). DNA microarray analyses with the C. glutamicum wild type and the DeltaphoRS mutant supported a role for the PhoRS system in the adaptation to Pi starvation. In contrast to the wild type, the DeltaphoRS mutant did not induce the known Pi starvation-inducible (psi) genes within 1 hour after a shift from Pi excess to Pi limitation, except for the pstSCAB operon, which was still partially induced. This indicates an activator function for PhoR and the existence of at least one additional regulator of the pst operon. Primer extension analysis of selected psi genes (pstS, ugpA, phoR, ushA, and nucH) confirmed the microarray data and provided evidence for positive autoregulation of the phoRS genes.
منابع مشابه
Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum.
The two-component signal transduction system PhoRS of Corynebacterium glutamicum is involved in the phosphate (P(i)) starvation response. To analyze the binding of unphosphorylated and phosphorylated PhoR to the promoters of phosphate starvation-inducible (psi) genes, this response regulator and the kinase domain of its cognate sensor, PhoS (MBP-PhoSDelta1-246), were overproduced and purified. ...
متن کاملDevelopment of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum
Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...
متن کاملPhosphate starvation-inducible gene ushA encodes a 5' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source.
Phosphorus is an essential component of macromolecules, like DNA, and central metabolic intermediates, such as sugar phosphates, and bacteria possess enzymes and control mechanisms that provide an optimal supply of phosphorus from the environment. UDP-sugar hydrolases and 5' nucleotidases may play roles in signal transduction, as they do in mammals, in nucleotide salvage, as demonstrated for Us...
متن کاملThe phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses.
The phosphate (P(i)) starvation stimulon of Corynebacterium glutamicum was characterized by global gene expression analysis by using DNA microarrays. Hierarchical cluster analysis of the genes showing altered expression 10 to 180 min after a shift from P(i)-sufficient to P(i)-limiting conditions led to identification of five groups comprising 92 genes. Four of these groups included genes which ...
متن کاملMutation-induced metabolite pool alterations in Corynebacterium glutamicum: towards the identification of nitrogen control signals.
The influence of glutamate dehydrogenase activity on nitrogen regulation in Corynebacterium glutamicum was investigated. As shown by RNA hybridization experiments deletion of the gdh gene results in a rearrangement of nitrogen metabolism. Even when sufficiently supplied with nitrogen sources, a gdh deletion strain showed the typical nitrogen starvation response of C. glutamicum. These changes i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 188 2 شماره
صفحات -
تاریخ انتشار 2006